Appendix DD

.

John Burcham

2005 MAY 2b HARRF Superintendent 1521 South Hale Avenue, Escondido, CA 92029 Phone: 760-839-6273 Fax: 760-738-5168

May 26, 2005

Mr. John Robertus **Executive Officer** California Regional Water Quality Control Board San Diego Region 9174 Sky Park Court, Suite 100 San Diego, CA 92123-4340 Attn: POTW Compliance Unit

Subject: Submittal of April 2005 Monthly Reports

Dear Sirs:

Attached are the subject Discharge Monitoring Reports for the Hale Avenue Resource Recovery Facility (HARRF) as required by Order No. 93-70.

If you have any questions, contact me at (760) 839-6273.

Sincerely,

John Burcham

HARRF Superintendent

Attached: April 2005 Monthly Reports

SELF- MONITORING REPORT

APRIL 2005

CITY OF ESCONDIDO

Hale Avenue Resource Recovery Facility

Order No. 93-70

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Mary Ann Mann Utilities Manager

SELF- MONITORING REPORT REVIEW

To: CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD

SAN DIEGO REGION

9174 Sky Park Court, Suite 100

San Diego, CA 92123-4340

DISCHARGER City of Escondido, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION NO. 93-70

REPORT FOR <u>APRIL 2005</u> REPORT DUE <u>MAY 2005</u>

REPORT FREQUENCY MONTHLY

SIGNED UNDER PENALTY OF PERJURY

Our Review of the Attached Self-Monitoring Report Reveals the Following Monitoring Violation(s):

One violation occurred in the month of April. Manganese was exceeded daily maximum value of 0.06 mg/l

The Following Remedial Action will be (has been) Taken to Correct the Monitoring Violation Listed Above:

The cause of manganese exceeded of daily maximum is still unknown. We suspect high manganese discharge from the Escondido-Vista water treatment plant residuals, when using local raw water which has contains high level manganese. We have sent samples of water treatment plant discharge, side stream sample from DAF subnate flow and polymer use at HARRF to determine manganese level.

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR: APRIL 2005

REPORT DUE: MAY 2005

EXACT SAMPLE POINT: Effluent end of UV infection Channel

SAMPLE TYPE: Continuous recording Flow meter and Turbidity Meter

SIGNED UNDER PENALTY OF PERJURY Van Wintert

Date	Flow	Turbidity	Turbidity
Units	MGD	NTU	NTU
		Influent	Effluent
Reqt.		Aveage	Aveage
4/1/2005	*	*	*
2	*	*	*
3	,*	*	*
4	0.58	4.2	1.9
5	0.87	3.8	1.8
6	0.84	4.2	1.6
7	*	*	. *
8	*	*	*
9	*	*	*
10	*	*	*
11	1.02	6.3	1.4
12	0.93	10.9	1.4
13	0.86	10.1	1.4
14	0.23	9.7	1.2
15	*	*	*
16	*	*	*
17	*	*	*
18	1.28	4.5	1.5
19	0.71	4.8	1.6
20	1.21	7.1	1.5
21	0.38	6.2	1.2
22	0.59	4.0	1.2
23	*	*	*
24	0.71	7.0	1.5
25	0.16	5.3	1.4
26	*	*	*
27	0.87	10.4	1.6
28	0.77	8.6	1.6
29	0.16	5.7	1.3
30	*	*	*
Average	0.7	6.6	1.5
Maximum	1.3	10.9	1.9
Minimum	0.2	3.8	1.2

[:]No distribution

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR: APRIL 2005

REPORT DUE: MAY 2005

EXACT SAMPLE POINT: Effluent end of UV infection Channel

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff

SIGNED UNDER PENALTY OF PERJURY Van Ciphapt

TOTAL COLIFORMS								
DATE	Daily 7 day							
	Maximum	Median						
Units	mpn/100ml	mpn/100ml						
Reqt.	23	.2						
4/1/2005	*	*						
2 .	*	*						
3	*	. *						
4	< 2	< 2						
5	< 2 < 2 < 2	< 2 < 2 < 2						
6	< 2							
7	*	*						
8	*	*						
9	*	*						
10	*	*						
11	< 2	< 2						
12	< 2 < 2	< 2 < 2 < 2 *						
13		< 2						
14	< 2	< 2						
15	*							
16	*	*						
17	*	*						
. 18	< 2	< 2						
19		< 2						
20	< 2 < 2	< 2 < 2						
21	< 2							
22	< 2	< 2						
23		1						
24	< 2	< 2						
25	< 2	< 2						
26	* .							
27	< 2	< 2						
28	170	< 2						
29	2 *	< 2 < 2 < 2						
30	. *	*						
Median	< 2	< 2						
Maximum	170	< 2						
Minimum	< 2	< 2						

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FOR: APRIL 2005

REPORT DUE: MAY 2005

EXACT SAMPLE POINT: Recycle pump station

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff & APCL

SIGNED UNDER PENALTY OF PERJURY

Va upelyt

Constituent/ Property	12-month Average Limit	Daily Maximum Limit	Method	ML/ PQL	MDL	Sample Date	Daily Maximum	Monthly Average	Units
Total Dissolved Solid	1000	1100	SM2540C	10	1	4/11/05	891	872	mg/l
Fluoride	2.0		EPA 300.0	0.05	0.008	4/11/05	1.05	1.05	mg/l
Chloride	300	330	EPA 300.0	0.5	0.08	4/11/05	192	192	mg/l
Sulfate	350	400	EPA 300.0	1	0.1	4/11/05	207	207	mg/l
Manganese	0.05	0.06	200.7	0.005	1.7E-04	4/11/2005 4/25/2005	0.13	0.10	mg/l
Boron	0.8		200.7	0.300	0.038	4/11/05	0.790	0.790	mg/l
Iron	0.3	0.4	200.7	0.050	0.0054	4/11/05	0.116	0.116	mg/l
Adjusted Sodium Absorption Ratio			Calculation			4/11/05	4.53	4.53	
Percent Sodium	60	65	Calculation			4/11/05	52.4	52.4	%

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FOR: APRIL 2005

REPORT DUE: MAY 2005

EXACT SAMPLE POINT: Recycle pump station

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY APCL

SIGNED UNDER PENALTY OF PERJURY Van Ciptent

Constituent/	Units	6-Month	Daily	Instantaneous	Method	PQL	MDL		
Property		Median	Maximum	Maximum				Dail	/ Max. Result
Sample Date	·								4/11/2005
Arsenic	ug/l	1100	6400	17000	200.7	5	1.2	<	5.0
Cadmium	ug/l	220	880	2200	200.7	2	0.24	<	2
Chromium	ug/l	440	1800	4400	200.7	5	2.1	J	1.3
Copper	ug/l	220	2200	6200	200.7	10	3.4	J	8
Lead	ug/l	440	1800	4400	200.7	5	1	<	5
Mercury	ug/l	8.7	35	- 88	245.1	1	0.025	J	0.2
Selenium	ug/l	3300	13000	33000	200.7	10	3.3	J	5.5
Silver	ug/l	64	360	960	200.7	10	0.66	<	10
Zinc	ug/l	2700	16000	42000	200.7	10	2.8		64.9
Aluminum	ug/l		6×4 944		200.7	100	20		176
Barium	ug/l				200.7	10	1.3		39.2

J: Report between PQL and MDL

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR: APRIL 2005

REPORT DUE: MAY 2005

EXACT SAMPLE POINT: <u>Recycle pump station</u>

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff

SIGNED UNDER PENALTY OF PERJURY

Van ciptut

	pН	Conductivity	TSS	VSS	BOD
Units	mg/l	mmho/cm	mg/l	mg/l	. mg/l
Method	SM 4500 H-B	SM2510B	SM2540D	SM 2540	SM 5210B
ML			1	1	3
4/1/2005					
2					
3					
4	7.7	1518	6.3	5.4	4.1
5					
6			-		
7					
8					,
9					
10					
11	7.6	1468	4.7	4.4	3.0
12					
13					
14					
15					
16					
17 .				·	
18	7.6	1506	4.3	3.9	< 3.0
19					
20					
21					
22			· ·		
23					·
24					
25					
26					
27	7.4	1514	9.6	9.5	< 3.0
28					
29					
30					·
31				·	
Average	7.6	1502	6.2	5.8	< 3.3
Maximum	7.7	1518	9.6	9.5	4.1
Minimum	7.4	1468	4.3	. 3.9	< 3.0

John Burcham
HARRF Superintendent
1521 South Hale Avenue, Escondido, CA 92029
Phone: 760-839-6273 Fax: 760-738-5168

June 24, 2005

Mr. John Robertus
Executive Officer
California Regional Water Quality Control Board
San Diego Region
9174 Sky Park Court, Suite 100
San Diego, CA 92123-4340
Attn: POTW Compliance Unit

Subject: Submittal of May 2005 Monthly Reports

Dear Sirs:

Attached are the subject Discharge Monitoring Reports for the Hale Avenue Resource Recovery Facility (HARRF) as required by Order No. 93-70.

If you have any questions, contact me at (760) 839-6273.

Sincerely,

John Burcham

HARRF Superintendent

Attached: May 2005 Monthly Reports

THE TIME OF A ST

SELF- MONITORING REPORT

MAY 2005

CITY OF ESCONDIDO

Hale Avenue Resource Recovery Facility

Order No. 93-70

SAM DIEGO LIEGUES SAMO SONTROL BOAND DE 53

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Mary Ann Mann Utilities Manager

SELF- MONITORING REPORT REVIEW

To: CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD

SAN DIEGO REGION

9174 Sky Park Court, Suite 100 San Diego, CA 92123-4340

DISCHARGER City of Escondido, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION NO. 93-70

REPORT FOR MAY 2005 REPORT DUE JUNE 2005

REPORT FREQUENCY MONTHLY

SIGNED UNDER PENALTY OF PERJURY

Our Review of the Attached Self-Monitoring Report Reveals the Following Monitoring Violation(s):

One violation occurred in the month of May. Manganese was exceeded daily maximum value of 0.06 mg/l

The Following Remedial Action will be (has been) Taken to Correct the Monitoring Violation Listed Above:

HARRF began testing water treatment plant discharge, a side stream sample from DAF subnate flow and polymer used at HARRF to search for a possible source of manganese. The results indicated that the source of manganese came from the Escondido-Vista water treatment plant local raw water sediment (Lake Wohlford). We are exploring options to oxidize the manganese and precipitate it out of the flow in the sand filters.

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR: MAY 2005

REPORT DUE: JUNE 2005

EXACT SAMPLE POINT: <u>Effluent end of UV infection Channel</u>

SAMPLE TYPE: Continuous recording Flow meter and Turbidity Meter

SIGNED UNDER PENALTY OF PERJURY

Van Liplant

Date	Flow	Turbidity	Turbidity
Units	MGD	NTU	NTU
		Influent	Effluent
Reqt.		Aveage	Aveage
5/1/2005	0.58	4.8	1.4
2	0.25	3.8	1.4
3	0.63	4.3	1.4
4	0.11	4.8	1.6
5	*	*	*
6	0.78	5.1	1.6
7	. *	*	*
. 8	0.77	5.4	1.0
9	0.23	4.5	1.2
10	*	*	*
11	1.04	6.2	1.2
12	0.88	6.4	1.3
13	0.19	5.4	1.2
14	*	. *	*
15	0.97	4.6	1.4
16	0.25	5.5	1.3
17	*	*	*
18	*	*	*
19	1.45	7.7	1.4
20	0.39	6.1	1.2
21	*	* .	*
22	1.25	3.8	1.5
23	0.09	3.7	1.4
24	1.03	4.7	1.5
25	0.44	4.8	1.6
26	*	*	*
27	0.97	5.3	1.9
28	*	*	*
29	1.22	3.7	1.4
30	1.33	3.6	1.4
31	0.15	3.2	1.2
Average	0.68	4.9	1.4
Maximum	1.45	7.7	1.9
Minimum	0.09	3.2	1.0

^{* :}No distribution

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR: MAY 2005

REPORT DUE: JUNE 2005

EXACT SAMPLE POINT: Effluent end of UV infection Channel

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff

SIGNED UNDER PENALTY OF PERJURY Van intent

TOTAL COLIFORMS								
DATE	DATE Daily 7 day							
	Maximum	Median						
Units	mpn/100ml	mpn/100ml						
Reqt.	23	2						
5/1/2005	< 2	< 2						
3	< 2	< 2 < 2 < 2 < 2 < 2 < x						
	2	< 2						
4	< 2	< 2						
5								
6	<' 2 *	< 2						
. 7	*	*						
8	< 2	< 2						
9 ·	< 2	< 2 < 2 *						
10	*	į						
11	< 2	< 2						
12	< 2	< 2						
13 ·	8	< 2						
14	*							
15	< 2	< 2						
16	< 2	< 2						
17	*	*						
18	*	*						
19	< 2	< 2						
20	< 2	< 2						
21	i	I						
22	< 2	< 2						
23	< 2	< 2 < 2						
24	< 2	< 2						
25	< 2	< 2						
26								
27	< 2	< 2						
28	1							
29	< 2	< 2						
30	< 2 < 2	< 2 < 2						
31								
Median	< 2	< 2						
Maximum	. 8	< 2 < 2						
Minimum	< 2	< 2						
		,						

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FOR: MAY 2005

REPORT DUE: JUNE 2005

EXACT SAMPLE POINT: Recycle pump station

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff & APCL

SIGNED UNDER PENALTY OF PERJURY Van Liplant

Constituent/ Property	12-month Average Limit	Daily Maximum Limit	Method	ML/ PQL	MDL	Sample Date	Daily Maximum	Monthly Average	Units
Total Dissolved Solid	1000	1100	SM2540C	10	1	5/1/05 5/11/05 5/11/05 5/15/05 5/24/05 5/29/05	985	926	mg/l
Fluoride	2.0		EPA 300.0	0.05	0.008	5/2/05	0.903	0.903	mg/l
Chloride	300	330	EPA 300.0	0.5	0.08	5/2/05	187	187	mg/l
Sulfate	350	400	EPA 300.0	1	0.1	5/2/05	213	213	mg/l
Manganese	0.05	0.06	200.7	0.005	1.7E-04	5/2/05	0.127	0.127	mg/l
Boron	0.8		200.7	0.300	0.038	5/2/05	0.795	0.795	mg/l
Iron	0.3	0.4	200.7	0.050	0.0054	5/2/05	0.222	0.222	mg/l
Adjusted Sodium Absorption Ratio			Calculation		en en	5/2/05	4.23	4.23	
Percent Sodium	60	65	Calculation	-		5/2/05	51.6	51.6	%

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FOR: MAY 2005

REPORT DUE: JUNE 2005

EXACT SAMPLE POINT: Recycle pump station

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY APCL

SIGNED UNDER PENALTY OF PERJURY Van Liptent

Constituent/	Units	6-Month	Daily	Instantaneous	Method	PQL	MDL		
Property		Median	Maximum	Maximum				Daily	/ Max. Result
Sample Date									5/2/2005
Arsenic	ug/l	1100	6400	17000	200.7	5	1.2	<	5.0
Cadmium	ug/l	220	880	2200	200.7	2	0.24	<	2
Chromium	ug/l	440	1800	4400	200.7	5	2.1	<	5
Copper	ug/l	220	2200	6200	200.7	10	3.4		14.8
Lead	ug/l	440	1800	4400	200.7	5	1	<	5
Mercury	ug/l	8.7	35	88	245.1	1	0.025	J	0.28
Selenium	ug/l	3300	13000	33000	200.7	10	3.3	<	10
Silver	ug/l	64	360	960	200.7	10	0.66	<	10
Zinc	ug/l	2700	16000	42000	200.7	10	2.8		74.0
Aluminum	ug/l	prod			200.7	100	20		276
Barium	ug/l				200.7	10	1.3		42.7

J: Report between PQL and MDL

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR: MAY 2005

REPORT DUE: JUNE 2005

EXACT SAMPLE POINT: Recycle pump station

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff

SIGNED UNDER PENALTY OF PERJURY Van ciptant

Units mg/l mmho/cm mg/l sM 5210l ML 1 1 3 5510l 3 571/2005 7.60 1460 2.5 2.2 3 3 4 3 3 4 4 4 5 5 6 6 6 6 6 6 6 6 7 8 9 9 10 11 7.5 1497 2.5 2.3 3.0		рН	Conductivity	TSS	VSS	BOD
Method SM 4500 H-B SM2510B SM2540D SM 2540 SM 5210I ML 1 1 3 5/1/2005 7.60 1460 2.5 2.2 3 2 3 1 1 3 3 4 1 3 4 3 4 3 4 3 6 <td>Units</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Units					
ML 1 1 3 5/1/2005 7.60 1480 2.5 2.2 3 2 3					SM 2540	
5/1/2005 7.60 1460 2.5 2.2 3 2 3 3 4 4 5 6 7 8 9 10 11 7.5 1497 2.5 2.3 < 3.0						
2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 7.5 1497 2.5 2.3 < 3.0 12 13 14 14 15 7.8 1464 2.7 2.3 < 3 16 16 17 7 18 18 19 19 20 21 22 22 23 3 24 7.6 1482 2.4 2.1 6.9 25 26 27 28 29 7.8 1470 1.8 1.8 1.8 30 30 31 Average 7.7 1475 2.4 2.1 < 4.0			Į.			
3 4 5 6 7 8 9 10 11 7.5 1497 12 3 13 4 15 7.8 1464 17 3 18 4 19 4 20 4 21 4 22 4 23 4 24 7.6 1482 25 4 26 4 27 28 29 7.8 1470 1.8 1.8 30 30 31 4 Average 7.7 1475 2.4 2.1 4.0 4.0		7.00	1400	2.5	2.2	3
4 5 6 7 8 9 10 11 11 7.5 1497 12 2.3 13 3 14 3 15 7.8 1464 17 3 18 3 19 30 20 21 21 22 23 3 24 7.6 1482 27 28 29 7.8 1470 1.8 1.8 30 30 31 4 Average 7.7 1475 2.4 2.1 2.4 2.1 4.0 4.0				 .		
5 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9						
6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9						· · · · · · · · · · · · · · · · · · ·
7 8 9 10 11 7.5 1497 2.5 2.3 < 3.0 12 13 14 15 7.8 1464 2.7 2.3 < 3 16 17 18 19 20 21 22 23 24 7.6 1482 2.4 2.1 6.9 25 26 27 28 29 7.8 1470 1.8 1.8 30 31 Average 7.7 1475 2.4 2.1 < 4.0						· · · · · · · · · · · · · · · · · · ·
8 9 10 11 7.5 1497 2.5 2.3 < 3.0						
9 10 11 7.5 1497 2.5 2.3 3.0 12 13 14 15 7.8 1464 2.7 2.3 3 16 17 18 19 20 21 22 23 24 7.6 1482 2.4 2.1 6.9 25 26 27 28 29 7.8 1470 1.8 1.8 30 31 Average 7.7 1475 2.4 2.1 <						
10 11 7.5 1497 2.5 2.3 < 3.0						
11 7.5 1497 2.5 2.3 < 3.0						
12 13 14 15 7.8 1464 2.7 2.3 3 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19 10						
13 14 15 7.8 1464 2.7 2.3 3 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19 10		7.5	1497	2.5	2.3	< 3.0
14 15 7.8 1464 2.7 2.3 3 16 17						
15 7.8 1464 2.7 2.3 3 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 10						
16 17 18 19 20 21 21 22 23 24 24 7.6 1482 25 26 27 28 29 7.8 1470 30 31 Average 7.7 1475 2.4 2.1 < 4.0						
17 18 19 20 21 22 23 24 24 7.6 1482 2.4 2.1 6.9 25 26 27 28 29 7.8 1470 1.8 1.8 30 31 30 31 4.0 Average 7.7 1475 2.4 2.1 < 4.0		7.8	1464	2.7	2.3	< 3
18 19 20 21 21 22 23 24 24 7.6 1482 25 26 27 28 29 7.8 1470 30 31 Average 7.7 1475 2.4 2.1 < 4.0					•	
19 20 21 22 23 30 24 7.6 1482 2.4 2.1 6.9 25 26 27 28 29 7.8 1470 1.8 1.8 30 30 31 30 31 4.0 4.0						
20 21 21 22 23 30 24 7.6 1482 2.4 2.1 6.9 25 26 27 28 29 7.8 1470 1.8 1.8 30 31 30 31 4.0 Average 7.7 1475 2.4 2.1 < 4.0						
21 22 23 3 24 7.6 1482 2.4 2.1 6.9 25 30 30 31 1.8 1.8 Average 7.7 1475 2.4 2.1 < 4.0						
22 23 24 7.6 1482 2.4 2.1 6.9 25 26 27 28 29 7.8 1470 1.8 1.8 1.8 30 31 30 31 4.0 Average 7.7 1475 2.4 2.1 < 4.0	20					
23 24 7.6 1482 2.4 2.1 6.9 25 26 27 28 29 7.8 1470 1.8 1.8 30 31 30 31 4.0 4.0 4.0	21					
24 7.6 1482 2.4 2.1 6.9 25 26 27 28 29 7.8 1470 1.8 1.8 30 31 4verage 7.7 1475 2.4 2.1 < 4.0	22			•		
25 26 27 28 29 7.8 1470 1.8 1.8 30 31 Average 7.7 1475 2.4 2.1 < 4.0	23					
25 26 27 28 29 7.8 1470 1.8 1.8 30 31 Average 7.7 1475 2.4 2.1 < 4.0	24	7.6	1482	2.4	2.1	6.9
26 27 28 29 7.8 30 31 Average 7.7 1475 2.4 29 4.0	25					
27 28 1470 1.8 1.8 29 7.8 1470 1.8 1.8 30 31 24 2.1 < 4.0				·		
28 29 7.8 1470 1.8 1.8 30 31 Average 7.7 1475 2.4 2.1 < 4.0						
29 7.8 1470 1.8 1.8 30 31 Average 7.7 1475 2.4 2.1 < 4.0		· · · · · · · · · · · · · · · · · · ·				
30 31 Average 7.7 1475 2.4 2.1 < 4.0		7.8	1470	1.8	1.8	
31 Average 7.7 1475 2.4 2.1 < 4.0						
Average 7.7 1475 2.4 2.1 < 4.0						
		7.7	1475	2.4	2.1	< 4.0
Maximum 7.8 1497 2.7 2.3 6.9						
Minimum 7.5 1460 1.8 1.8 < 3.0						

WATER QUALITY SONTROL BOARD

John Burcham
HARRF Superintendent

1521 South Hale Ayenue Escondido, QA 92029 Phone: 760-839-6273 Fax: 760-738-5168

July 21, 2005

Mr. John Robertus
Executive Officer
California Regional Water Quality Control Board
San Diego Region
9174 Sky Park Court, Suite 100
San Diego, CA 92123-4340
Attn: POTW Compliance Unit

Subject: Submittal of June 2005 Monthly Reports

Dear Sirs:

Attached are the subject Discharge Monitoring Reports for the Hale Avenue Resource Recovery Facility (HARRF) as required by Order No. 93-70.

If you have any questions, contact me at (760) 839-6273.

Sincerely,

John Burcham

HARRF Superintendent

Attached: June 2005 Monthly Reports

2005 JUL 25 P 1:52

SELF- MONITORING REPORT

JUNE 2005

CITY OF ESCONDIDO

Hale Avenue Resource Recovery Facility

Order No. 93-70

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Mary Ann Mann Utilities Manager

SELF- MONITORING REPORT REVIEW

To: CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD SAN DIEGO REGION
9174 Sky Park Court, Suite 100
San Diego, CA 92123-4340

DISCHARGER City of Escondido, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION NO. 93-70

REPORT FOR JUNE 2005 REPORT DUE JULY 2005

REPORT FREQUENCY MONTHLY

SIGNED UNDER PENALTY OF PERJURY L. Buchan

Our Review of the Attached Self-Monitoring Report Reveals the Following Monitoring Violation(s):

One violation occurred in the month of JUNE. Manganese was exceeded daily maximum value of 0.06 mg/l

The Following Remedial Action will be (has been) Taken to Correct the Monitoring Violation Listed Above:

Our search for the cause of high manganese in the reclaimed water (see attached A) indicated that the source is the Escondido-Vista Water Treatment Plant (WTP) local raw water sediment (Lake Wohlford). Ferrous Chloride, which commonly contains high levels of manganese, is used as a coagulant at the WTP in Lake Wohlford treatment. It is important to note that from June 4-12 the WTP delivered a blend containing less water from Lake Wohlford and then from June13-24 completely shut down the Lake Wohlford inlet for maintenance. During the June 4-24 time period manganese levels returned to the acceptable discharge limit, providing further proof that the Lake Wohlford source water is delivering high levels of manganese to HARRF and causing the reclaimed to violate the manganese limits. Lake Wohlford is a necessary water source for the WTP so we are currently developing methods to oxidize the manganese and precipitate it out of the reclaimed water during the sand filter treatment. At this time results for the manganese oxidization and precipitation method are not yet available for review. We are also searching for substitute coagulants that may reduce manganese levels for future usage.

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR: JUNE 2005

REPORT DUE: JULY 2005

EXACT SAMPLE POINT: Effluent end of UV infection Channel

SAMPLE TYPE: Continuous recording Flow meter and Turbidity Meter

SIGNED UNDER PENALTY OF PERJURY

Van instant

Date	Flow	Turbidity	Turbidity
Units	MGD	NTU	NTU
		Influent	Effluent
Reqt.		Aveage	Aveage
6/1/2005	*	*	*
2	1.17	3.0	1.7
3	1.31	4.1	1.8
4	0.22	4.1	1.8
5.	*	* .	*
6	1.22	2.9	1.4
7	0.70	3.0	1.3
8	*	*	*
9	1.07	5.1	1.6
10	1.10	7.7	1.8
11	*	*	*
12	0.93	7.3	1.5
13	1.19	5.3	1.4
14	0.34	4.8	1.1
15	*	*	*
16	0.87	3.1	1.6
17	0.32	3.3	1.8
18	*	*	. *
19	*	*	*
20	1.03	4.3	0.9
21	1.39	4.6	0.9
22	0.06	4.5	0.9
23	*	*	*
24	1.38	3.7	1.2
25	*	*	*
26	0.87	4.1	1.0
27	0.72	3.8	0.9
28	0.21	3.8	1.1
29	*	*	*
30	0.76	4.8	1.7
Average	0.84	4.4	1.4
Maximum	1.39	7.7	1.8
Minimum	0.06	2.9	0.9

^{* :}No distribution

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR: JUNE 2005

REPORT DUE: JULY 2005

EXACT SAMPLE POINT: Effluent end of UV infection Channel

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff

SIGNED UNDER PENALTY OF PERJURY

Van lightet

TC	TOTAL COLIFORMS						
DATE	Daily	7 day					
	Maximum	Median					
Units	mpn/100ml	mpn/100ml					
Reqt.	23	2					
6/1/2005	*	*					
	< 2	< 2					
3	< 2 < 2 < 2 *	< 2 < 2 < 2 *					
4	< 2	< 2					
- 5	*	*					
6	< 2	< 2					
7	< 2 < 2 *	< 2 < 2 *					
8	*	*					
9	< 2	< 2					
10	< 2	< 2 .					
11	*	*					
12	< 2	< 2					
13	< 2 < 2 < 2 *	< 2 < 2 < 2 *					
14	< 2	< 2					
15	*	1					
16	< 2	< 2					
17	< 2	< 2					
18	*	*					
19	*	*					
20	< 2	< 2					
21	< 2 < 2 < 2 *	< 2 < 2 < 2 *					
22	< 2	< 2					
23	*	*					
24	< 2	< 2					
25	*	*					
26	< 2	< 2					
27	< 2	< 2 < 2 < 2 *					
28	< 2	< 2					
29	*	*					
30	< 2	< 2					
Median	< 2	< 2					
Maximum	2	< 2					
Minimum	2 < 2	< 2 < 2					
	<u> </u>						

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FOR :JUNE 2005

REPORT DUE: JULY 2005

EXACT SAMPLE POINT: Recycle pump station

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff & APCL

SIGNED UNDER PENALTY OF PERJURY Van Without

Constituent/ Property	12-month Average Limit	Daily Maximum Limit	Method	ML/ PQL	MDL	Sample Date	Daily Maximum	Monthly Average	Units
Total Dissolved Solid	1000	1100	SM2540C	10	1	6/21/05 6/6/05 6/12/05 6/20/05 6/26/05	920	913	mg/l
Fluoride	2.0		EPA 300.0	0.05	0.008	6/6/05	1.00	1.00	mg/l
Chloride	300	330	EPA 300.0	0.5	0.08	6/6/05	198	198	mg/l
Sulfate	350	400	EPA 300.0	1	0.1	6/6/05	244	244	mg/l
Manganese	0.05	0.06	200.7	0.01	9.0E-06	6/05	0.089	0.045	mg/l
Boron	0.8		200.7	0.50	0.00074	6/05	0.819	0.694	mg/l
Iron	0.3	0.4	200.7	0.50	0.00037	6/05	J 0.057	J 0.051	mg/l
Adjusted Sodium Absorption Ratio			Calculation			6/6/05	4.95	4.95	<u></u>
Percent Sodium	60	65	Calculation			6/6/05	55.7	55.7	%

Note: J = value between ML & MDL

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR :JUNE 2005

REPORT DUE: JULY 2005

EXACT SAMPLE POINT: <u>Recycle pump station</u>

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff

SIGNED UNDER PENALTY OF PERJURY Van With

	Method	ML	MDL	Manganese	Unit
6/2/2005	200.7	0.01	0.000009	0.0789	mg/l
6/6/2005	200.7	0.01	0.000009	0.0584	mg/l
6/7/2005	200.7	0.01	0.000009	0.0413	mg/l
6/9/2005	200.7	0.01	0.000009	0.0335	mg/l
6/10/2005	200.7	0.01	0.000009	0.0207	mg/l
6/12/2005	200.7	0.01	0.000009	0.0228	mg/l
6/13/2005	200.7	0.01	0.000009	0.0288	mg/l
6/14/2005	200.7	0.01	0.000009	0.0289	mg/l
6/17/2005	200.7	0.01	0.000009	0.0469	mg/l
6/20/2005	200.7	0.01	0.000009	0.0486	mg/l
6/26/2005	200.7	0.01	0.000009	0.0890	mg/l
			Average	0.0453	mg/l
			Maximum	0.0890	mg/l
•			Minimum	0.0207	mg/l

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FOR :JUNE 2005

REPORT DUE: JULY 2005

EXACT SAMPLE POINT: Recycle pump station

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY APCL

SIGNED UNDER PENALTY OF PERJURY Van Lipty

Constituent/	Units	6-Month	Daily	Instantaneous	Method	PQL	MDL		
Property		Median	Maximum	Maximum				Daily	Max. Result
Sample Date									6/6/2005
Arsenic	ug/l	1100	6400	17000	200.7	10	3.69	<	10.0
Cadmium	ug/l	220	880	2200	200.7	10	0.126	<	10
Chromium	ug/l	440	1800	. 4400	200.7	10	0.364	· <	10
Copper	ug/l	220	2200	6200	200.7	10	0.138	J	4.54
Lead	ug/l	440	1800	4400	200.7	5	1.62	<	5
Mercury	ug/l	8.7	35	88	245.1	1	0.025	J	0.39
Selenium	ug/l	3300	13000	33000	200.7	10	1.2	J	1
Silver	ug/l	64	360	960	200.7	10	0.116	J	1
Zinc	ug/l	2700	16000	42000	200.7	10	0.315		34.9
Aluminum	ug/l				200.7	500	1.85	J	180
Barium	ug/l				200.7	10	0.006		46.4

J: Report between PQL and MDL

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR :JUNE 2005

REPORT DUE: JULY 2005

EXACT SAMPLE POINT: Recycle pump station

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff

SIGNED UNDER PENALTY OF PERJURY

	рН	Conductivity	TSS	VSS		BOD
Units	mg/l	mmho/cm	mg/l	mg/l		mg/l
Method	SM 4500 H-B		SM2540D	SM 2540	S	M 5210B
ML			. 1	1		3
6/1/2005		.,,				
2	7.8	1464	2.8	2.4	<	3
3						
4						
5						
6	7.8	1496	3.8	3.0	<	3
7						
8						
9						
10						
11						
12	7.9	1524	3.6	3	<	3
13 .						
14				<u> </u>	<u> </u>	
15						
16						
17						
18						
19						
20	7.8	1566	5.0	4.7		6.5
21						
22						
23	<u> </u>					
24						
25						
26	7.8	1453	3.5	2.9	<	3
27				<u> </u>		
28					ļ	
29						
30					 	
Average	7.8	1501	3.7	3.2	<	3.7
Maximum	7.9	1566	5.0	4.7		6.5
Minimum	7.8	1453	2.8	2.4	<	3.0

ATTACHMENT A

Applied P & CH Laboratories

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: City of Escondido

Attention: Vasana Vipatapat

1521 S.Hale Ave Escondido CA 92029

Tel: (760)839-6284 Fax: (760)738-5168

APCL Analytical Report

Service ID #: 801-053036

Collected by:

Collected on: 06/15/05

Received: 06/15/05

Extracted: N/A

Tested: 06/22/05 Reported: 06/23/05

Sample Description: Brown Iron Chloride Solution.

Project Description: WTP-Ferrous Chloride

Analysis of Water Samples

Component Analyzed	Method	Unit	PQL	MDL	Analysis Result 050615-0176 05-03036-1
Dilution Factor					100
Arsenic	200.7	μ g/L	5	1.3	7,290
Dilution Factor					5
Boron	200.7	$_{\mu t g/L}$	200	55	<1000
Dilution Factor					100
Cadmium	200.7	$_{\mu \mathrm{g/L}}$	2	0.47	< 200
Chromium	200.7	$_{\mu exttt{g/L}}$	5 .	1.3	19,900
Copper	200.7	$_{\mu t g/L}$	10	0.68	28,000
${f Lead}$	200.7	$_{\mu \mathrm{g/L}}$	5	1.3	3,080
Manganese	200.7	$_{\mu { m g}/{ m L}}$	5 ·	0.62	664,000
Nickel	200.7	$_{\mu}$ g/L	5	0.86	59,100
Silver	200.7	$\mu { m g/L}$	10	0.99	<1000
Zinc	200.7	$_{\mu}\mathrm{g/L}$	10	2.4	40,400

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

"-": Analysis is not required.

N.D.: Not Detected or less than the practical quantitation limit.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully submitted.

Laboratory Director

Applied P & CH Laboratories

Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710

Tel: (909) 590-1828

Fax: (909) 590-1498

Submitted to:

City of Escondido

Attention: Vasana Vipatapat

1521 S.Hale Ave

Escondido, CA 92029

Tel: (760)839-6284 Fax: (760)738-5168

APCL QA/QC Report

Service ID #: 801-053036

Collected by:

Collected on: 06/15/05

Sample description:

Brown Iron Chloride Solution.

Project: WTP-Ferrous Chloride

Analysis of Brown Iron Chloride Solution

801-053036QC

Received: 06/15/05

Reported: 06/29/05

Tested: 06/22/05

Component Name	Analysis Batch #	ICV	ICV	M-Blank		SP Level	LCS	MS	MSD	MS/MSD	Contro	ol Limit
	Datell #	(mg/L)	%Rec		Unit		%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
METAL Analysis in W	Vater											
Arsenic	05M1619	1.00	100	N.D.	mg/L	0.200	105	125	121	3	75-125	20
Cadmium	05M1619	2.00	100	N.D.	${ m mg/L}$	0.200	103	114	111	3	75-125	20
Chromium	05M1619	1.00	100	Ń.D.	mg/L	0.400	103	112	109	2	75-125	20
Copper	05M1619	4.00	101	N.D.	mg/L	0.500	103	114	112	2	75-125	20
Lead	05M1619	1.00	99	N.D.	mg/L	0.400	103	116	113	3	75-125	20
Manganese	05M1619	4.00	100	N.D.	mg/L	0.500	108	118	116	2 .	75-125	20
Nickel	05M1619	4.00	100	N.D.	mg/L	0.500	104	117	114	2	75-125	20
Silver	05M1619	2.00	100	N.D.	mg/L	0.400	103	114	111	2	75-125	20
Zinc	05M1619	4.00	100	N.D.	mg/L	0.400	105	117	115	2		
Boron	05M1619	4.00	99		mg/L	2.00	94	96	100	4	75-125 75-125	20 20

*: LCS/LCSD is used.

Notation: ICV - Initial Calibration Verification

CCV - Continuation Calibration Verification

LCS - Lab Control Spike

MS - Matrix Spike

MSD - Matrix Spike Duplicate ICS - Interference Check Standard

MD - Matrix Duplicate

N.D. - Not detected or less than PQL

CCB - Continuation Calibration Blank

M-blank - Method Blank SP Level - Spike Level

%Rec - Recovery Percent

%RPD - Relative Percent Differences

%Diff - Control Limit for %RPD

ICP-SD - ICP Serial Dilution

N.A. - Not Applicable

Respectfully submitted,

Regina Kirakozova, Associate QA/QC Director

Applied P & CH Laboratories

Applied P & Ch Laboratory

Chain of Custody

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Please Print in pen Page ____ of ___

APCL USE ONLY	Relinquished	Relinquished	Sample Conditions:	Sample Disposal:	QC Requirement:				•								750615-0176 j	ID No.	Field Sample	Due Date: Tregular	Project Address	Project Name/Co	Bill to: Same	Address: /52/	Client: City o
NLY Service #	by MRWWY	by they full the	□Intact; □Broken.	Return Disposal by APCL	Regular; YQA/QC Report; WIP; Raw Data;											Kemiron Pacific	150615-0176 Ferrous Chloride- WTP	Description	Sample	ular		Project Name/Code WTP - Ferrous Chlo	C	1521 S. Hale Ave	Client: City of Escandido
	Date/Time@/(17/6 1/7	The Date/Time 6-15-05/ 1300	Cooler Seal: Intact;	Hold for	WIP; Raw Data;						,						6-15-05 1100	Collected	Date Time	urs Sampled by:	APCL Q	Chloride Job#		City: É	Contact:
	15/67 117	12-12 13	□Intact; □Broken; □ None .	days after receiving date.	Extended Raw Data												Agueous 1		Sample 1	by:	APCL Quotation #	P.0		City: Escandido	Vasana V
Note:	7/C Received	Received	None . Tag #		w Data CLP; ACE												none 1	0	Preser- # of			P.O. #			Contact: Vasana Vipatapat
	by	by Mr	+	If not specified, :	ACE AFCEE					•							X		00.	7	¥			State: CA	Tel #: 7
		min		samples will be	NEESA		,																Analysis I		60-839-6274
	Date/Time	Date/Time 6	femperature:	discarded 45 day	_(E, C or D);																			Zip code: <	Fax #: 760
1 1	6/15/	115/05-11	Room Cold (If not specified, samples will be discarded 45 days after samples are received.	ther(Please specify)	-							for Special	- See Dominique	2	As, Zn, B,	* Mn, Pb,Cu	Remarks		Pink - Originator	Yellow - Lab copy	White - With report		92029	1-738-5168
	70	3 a Q	°C).	eceived.	specify)		_					ξ		12/26	1	£ ,	5					ort			

Clients understand that all terms described in the proposals, quotations for this project, and/or the general terms provided in the current APCL price schedules will be followed. APCL reserves the right to terminate its service or withhold delivery of any reports, if in APCL's sole discretion the terms of the project have been broken.

Applied P & CH Laboratories

13760 Magnolia Ave., Chino, CA 91710

Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to:

City of Escondido

Attention: Vasana Vipatapat

1521 S.Hale Ave Escondido CA 92029

Tel: (760)839-6284 Fax: (760)738-5168

APCL Analytical Report

Service ID #: 801-052716

Collected by:

Collected on: 05/12/05

Received: 05/12/05

Extracted: N/A Tested:

05/23/05 Reported: 06/02/05

Sample Description: Polymer and Water

Project Description: 70047 Manganese Source Study

Analysis of Water and Polymer Samples

I. Analysis of Water Samples

	•					Analysis Result	
Component Analyzed	Method	Unit	PQL	MDL	0505120146 05-02716-1	050512014703 05-02716-4	050512014704 05-02716-5
Dilution Factor Manganese	6010B	$_{\mu exttt{g}}/ exttt{L}$	5	0.43	2 26,600 '	1 19.7	1 178

II. Analysis of Polymer Samples

				•	Analys	is Result
Component Analyzed	Method	Unit	PQL	MDL	050512014701 05-02716-2	050512014702 05-02716-3
Dilution Factor					1	0.91
Manganese	6010B	mg/kg	0.5	0.013	1.4	0.45J

PQL: Practical Quantitation Limit.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully submitted

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NELAP No.:02114CA

CI-1151 D001 X 05-2716 b Page: 1 of 1

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

[&]quot;-": Analysis is not required.

J: Reported between PQL and MDL.

Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828

Fax: (909) 590-1498

Submitted to:

City of Escondido

Attention: Vasana Vipatapat

1521 S.Hale Ave Escondido, CA 92029

Tel: (760)839-6284 Fax: (760)738-5168

APCL QA/QC Report

Service ID #: 801-052716

Collected by:

Collected on: 05/12/05

Sample description: Polymer and Water

Project: Manganese Source Study /70047

Analysis of Polymer and Water

801-052716QC

Received: 05/12/05

Reported: 06/15/05

Tested: 05/23/05

Component Name	Analysis Batch #	ICV (mg/L)	ICV %Rec	M-Blank	Conc. Unit	SP Level	LCS %Rec	MS %Rec	MSD %Rec	MS/MSD %RPD	Contro %Rec	ol Limit %Diff
METAL Analysis in W	ater											-
Manganese	05M1510	4.00	99	N.D.	mg/L	0.500	106	106*	105*	1	80-120	20
<u> </u>	Analysis	ICV	ICV	M-Blank	Conc.	SP Level	LCS	MS	MSD	MS/MSD	Contro	l Limit
Component Name	Batch #	(mg/L)	%Rec		Unit	•	%Rec	%Rec	%Rec	%RPD	%Rec	%Diff
METAL Analysis in So	il						- ,,					
Manganese	05M1511	4.00	99	N.D.	mg/kg	25.0	103	103*	105*	2	80-120	20

*: LCS/LCSD is used.

Notation:

ICV - Initial Calibration Verification

CCV - Continuation Calibration Verification

LCS - Lab Control Spike

MS - Matrix Spike

MSD - Matrix Spike Duplicate

ICS - Interference Check Standard

MD - Matrix Duplicate

N.D. - Not detected or less than PQL

CCB - Continuation Calibration Blank

M-blank - Method Blank

SP Level - Spike Level

%Rec - Recovery Percent %RPD - Relative Percent Differences

%Diff - Control Limit for %RPD

ICP-SD - ICP Serial Dilution

N.A. - Not Applicable

Respectfully submitted,

Regina Kirakozova,

Associate QA/QC Director Applied P & CH Laboratories

Applied P & Ch Laboratory

Chain of Custody

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Note:	7	APCL USE ONLY Service #	APCL
1 Date/Time 3/12/05 / 1638) Received by	Date/Time 5/12/05/1630 Received	Relinquished by Harmon &	Relinqı
MCV E Date/Time 5:12:55 / (2:55)	Received by	Date/Time 9,12.05 / 12:57 Received	Relinquished by	Relinqu
Temperature: Room Cold ("	ne . Tag #	Cooler Seal:	Sample Conditions: Lanack Broken. Coo	Sample (
If not specified, samples will be discarded 45 days after samples are receive $\frac{1}{2}$	·	Hold for days after receiving date	Sample Disposal: Return Disposal by APCL	Sample L
NEESA(E, C or D); Other(Please specif	□clp; [Regular; MQA/QC Report; WIP; Raw Data; Extended Raw Data	QC Requirement: Regular; XQA/QC Report;	QC Requi
850#:014B				
*				
		Manghese Imparities	tookin for wans	
			activates.	
	\$\frac{1}{2}	teched MSDS sheets	Nease See All	
				į
	\(\vec{\pi}{\pi}\)	5-12-5 Uniter 1-4003	20146 WTP Sedement Busin Combined	०८०८।२०।५७
	7	5.12.05 08:00 why Huly	350572 6(4704 DAF PEROVERY	2150.51
		SC.12.05 (1:10 polymer	20.27 5/17 19/19/20 00:135 Edwar 19/19/20 00	US0512
	-	5.15.05 11:05 polymer	7	SeS 12 0
	-	5-12-65 11:15 Johnner	470 Jew Che	50512
Remarks	Containers	lected	De	ID No.
	# of	Date Time Sample Preser-	Sample Sample	Field Sample
Pink - Originator	gau	hours Sampled by:	gular []rush: days	Jue Date
Yellow – Lab copy	ees.	APCL Quotation #	Project Address	roject /
White - With report	e-	Source Study Job # 7004 7P.O. #	Project Name/Code h Garages 2 1 25 war	roject N
Analysis Items				Rill to
Zip code: 92029	State: CA	· City: Escondido	0 - 0	ddress
839(274 Fax #: 760 758 5168	Upilart Tel # 7608	Contact: Vesaus Up	City of Eximited	Client:
		Fax: (909) 590-1498	A P C L Tel: (909) 590-1828	A
			12760 Magnolia A	

Clients understand that all terms described in the proposals, quotations for this project, and/or the general terms provided in the current APCL price schedules will be followed. APCL reserves the right

John Burcham HARRF Superintendent 1521 South Hale Avenue, Escondido, CA 92029 Phone: 760-839-6273 Fax: 760-738-5168

August 18, 2005

Mr. John Robertus **Executive Officer** California Regional Water Quality Control Board San Diego Region 9174 Sky Park Court, Suite 100 San Diego, CA 92123-4340 Attn: POTW Compliance Unit

Subject: Submittal of July 2005 Monthly Reports

Dear Sirs:

Attached are the subject Discharge Monitoring Reports for the Hale Avenue Resource Recovery Facility (HARRF) as required by Order No. 93-70.

If you have any questions, contact me at (760) 839-6273.

Sincerely,

John Burcham

HARRF Superintendent

Attached: July 2005 Monthly Reports

SELF- MONITORING REPORT

JULY 2005

CITY OF ESCONDIDO

Hale Avenue Resource Recovery Facility

Order No. 93-70

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Mary Ann Mann Utilities Manager

SELF- MONITORING REPORT REVIEW

To: CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD SAN DIEGO REGION
9174 Sky Park Court, Suite 100
San Diego, CA 92123-4340

DISCHARGER City of Escondido, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION NO. 93-70

REPORT FOR JULY 2005 REPORT DUE JULY 2005

REPORT FREQUENCY MONTHLY

SIGNED UNDER PENALTY OF PERJURY

Our Review of the Attached Self-Monitoring Report Reveals the Following Monitoring Violation(s):

One violation occurred in the month of July. Manganese was exceeded daily maximum value of 0.06 mg/l

The Following Remedial Action will be (has been) Taken to Correct the Monitoring Violation Listed Above:

As from last months discussion, the manganese oxidization and precipitation of the Manganese in the recycled water is not performing as expected due to lack of detention time prior to the sand filters. Water Treatment Plant staff is continuing to pursue alternate chemical(s) (Ferric Sulfate) for use as a coagulant.

The City is preparing a letter report on the manganese issue for you review and direction.

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR: JULY 2005

REPORT DUE: AUGUST 2005

EXACT SAMPLE POINT: Effluent end of UV infection Channel

SAMPLE TYPE: Continuous recording Flow meter and Turbidity Meter

SIGNED UNDER PENALTY OF PERJURY

Vaser inpetent

Date	Flow	Turbidity	Turbidity
Units	MGD	NTU	NTU
		Influent	Effluent
Reqt.		Aveage	Aveage
7/1/2005	1.43	5.7	1.5
. 2	0.31	4.7	1.2
3	* .	*	*
4	*	*	*
5	0.45	5.5	1.5
6	1.32	4.7	1.4
7	1.45	3.7	1.5
8	0.62	3.2	1.8
9	0.05	2.9	1.7
10	*	*	*
11	1.39	3.9	1.5
12	1.44	4.2	1.6
13	0.12	4.1	1.6
14	0.87	4.0	1.5
15	0.82	4.0	1.4
16	0.12	4.6	1.6
17	*	*	*
18	0.83	3.1	1.4
19	1.44	3.1	1.3
20	0.06	3.1	1.3
21	0.95	2.6	1.1
22	0.69	2.4	1.0
23	0.02	2.2	1.0
24	1.19	3.4	1.1
25	0.41	3.8	1.1
26	1.05	2.6	1.3
27	0.94	2.4	1.1
28	0.84	2.7	1.2
29	0.36	7.9	1.2
30	*	*	*
31	1.18	3.5	1.3
Average	0.78	3.8	1.4
Maximum	1.45	7.9	1.8
Minimum	0.02	2.2	1.0

^{* :}No distribution

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR: JULY 2005

REPORT DUE: AUGUST 2005

EXACT SAMPLE POINT: Effluent end of UV infection Channel

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff

SIGNED UNDER PENALTY OF PERJURY

Vane lipetent

DATE Daily Maximum 7 day Median Units mpn/100ml mpn/100ml Reqt. 23 2 7/1/2005 2 2 2 2 2 2 2 3 4 3 3 4 5 4 2 2 2 6 2 2 2 2 8 2 2 2 2 9 2 2 2 2 9 2 2 2 2 9 2 2 2 2 10 11 2 2 2 12 2 2 2 13 2 2 2 14 2 2 2 15 2 2 2 16 2 2 2 20 2 2 2 20 2 2 <th< th=""><th>TC</th><th colspan="8">TOTAL COLIFORMS</th></th<>	TC	TOTAL COLIFORMS							
Units Maximum mpn/100ml Median mpn/100ml Reqt. 23 2 7/1/2005 2 2 2 2 2 2 2 3 4 2	DATE	Da	aily	7 (day				
Reqt. 23 2 7/1/2005 2 2 2 2 2 3 4 <	·			Median					
7/1/2005 2 2 2 2 2 3 4 5 2 2 6 2 2 7 2 2 8 2 2 9 2 2 10 2 2 10 2<	Units	mpn/	100ml	mpn/	100ml				
7/1/2005 2 2 2 2 2 3 4 5 2 2 6 2 2 7 2 2 8 2 2 9 2 2 10 2 2 10 2<	Reqt.	2	23		2				
3 4 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <	7/1/2005			< :	2				
4 5 <	2	< ;	2 <	<	2				
5 <	3	•							
6 2 2 7 2 2 8 2 2 9 2 2 10 2 2 11 2	4				·				
10 11 < 2	5	< :	2 <						
10 11 < 2	6	< ;	2 <	< ;	2				
10 11 < 2	7 '	< :	2 <	<	2				
10 11 < 2	8	< :	2 <	<	2				
11 2 2 12 2 2 13 2 2 14 2 2 15 2 2 16 2 2 17 2 2 19 2		<	2 <	<	2				
12 <	10								
13 <	11	<	2 <	<	2				
16 <	12	<	2 <	<	2				
16 <	13	<	2 <	<	2				
16 <	14	<	2 <	<	2				
17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 2 26 2 27 2 28 2 29 2	. 15			<	2				
18 <	16	<	2 <	<	2				
19 <	17 ·								
20 2 2 21 2 2 22 2 2 23 2 2 24 2 2 25 2 2 26 2 2 27 2 2 28 2 2 29 2 2	18	<	2 <						
25 2 2 26 2 2 27 2 2 28 2 2 29 2 2	19	<	2 <	<	2				
25 2 2 26 2 2 27 2 2 28 2 2 29 2 2	20	<	2 <	<	2				
25 2 2 26 2 2 27 2 2 28 2 2 29 2 2	21	<	2 <	< .	2				
25 2 2 26 2 2 27 2 2 28 2 2 29 2 2	22	<	2 <	<	2				
25 2 2 26 2 2 27 2 2 28 2 2 29 2 2		<	2 <	<	2				
26 <		<	2 <	<	2				
	25	<	2 <	<	2				
	26	<	2 <	<	2				
	27	<	2 <	<	2				
		<	2 <	<	2				
30		<	2 <	<	2				
	30								
31 < 2									
Median < 2 < 2	Median	<	2 <	<	2				
Maximum 2 < 2			2 <	<	2				
Minimum < 2 < 2	Minimum	<	2 <	<	2				

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FOR: JULY 2005

REPORT DUE: AUGUST 2005

EXACT SAMPLE POINT: Recycle pump station

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff & APCL

SIGNED UNDER PENALTY OF PERJURY _

Van inputyt

Constituent/ Property	12-month Average Limit	Daily Maximum Limit	Method	ML/ PQL	MDL	Sample Date	Daily Maximum	Monthly Average	Units
Total Dissolved Solid	1000	1100	SM2540C	10	1	7/05	923	925	mg/l
Fluoride	2.0		EPA 300.0	0.05	0.008	7/18/05	0.97	0.97	mg/l
Chloride	300	330	EPA 300.0	0.5	0.08	7/18/05	186	186	mg/l
Sulfate	350	400	EPA 300.0	1	0.1	7/18/05	224	224	mg/l
Manganese	0.05	0.06	200.7	0.010	9.0E-06	7/7/05	0.125	0.125	mg/l
Boron	0.8		200.7	0.010	0.0007	7/7/05	0.752	0.752	mg/l
Iron	0.3	0.4	200.7	0.050	0.0003	7/7/05	0.113	0.113	mg/l
Adjusted Sodium Absorption Ratio			Calculation			7/7/05	4.71	4.71	
Percent Sodium	60	65	Calculation			7/7/05	54.5	54.5	%

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FOR: JULY 2005

REPORT DUE: AUGUST 2005

EXACT SAMPLE POINT: Recycle pump station

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY APCL

SIGNED UNDER PENALTY OF PERJURY

Var instrit

Constituent/	Units	6-Month	Daily	Instantaneous	Method	ML	MDL		
Property		Median	Maximum	Maximum				Daily	Max. Result
Sample Date		, , , , , , , , , , , , , , , , , , , ,							7/7/2005
Arsenic	ug/l	1100	6400	17000	200.7	10	3.69	٧	10.0
Cadmium	ug/l	220	880	2200	200.7	2	0.13	<	2
Chromium	ug/l	440	1800	4400	200.7	2 -	0.36	<	2
Copper	ug/l	220	2200	6200	200.7	5	0.1		7.02
Lead	ug/l	440	1800	4400	200.7	5	1.6	J	1.9
Mercury	ug/l	8.7	35	88	245.1	1	0.025	J	0.33
Selenium	ug/l	3300	13000	33000	200.7	10	1.2	J	4.8
Silver	ug/l	64	360	960	200.7	2	0.12	J	1.0
Zinc	ug/l	2700	16000	42000	200.7	10	0.32		41.5
Aluminum	ug/l				200.7	50	1.9		137
Barium	ug/l				200.7	10	0.006		50.7

J: Report between ML and MDL

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR: JULY 2005

REPORT DUE: AUGUST 2005

EXACT SAMPLE POINT: <u>Recycle pump station</u>

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff

SIGNED UNDER PENALTY OF PERJURY Vasa Cipatent

	рН	Conductivity	TSS	VSS	BOD
Units	mg/l	mmho/cm	mg/l	mg/l	mg/l
Method	SM 4500 H-B		SM2540D	SM 2540	SM 5210B
ML			1	3W 2540	3
			<u> </u>		3
7/1/2005					
2			<u></u>		
3					
4	 	4404	4.0	3.6	3.2
5	7.7	1461	4.3	3.6	3.2
6	ļ				
7					
8					
9			 .		
10					
11					
12	7.7	1470	2.7	2.4	< 3
13		<u> </u>			
14				·	
15					
16					
17					
- 18	7.5	1440	5.6	5.3	3.7
19					
20					
21					
22					
23					
24	7.7	1450	2.4	2	4.4
25					
26					
27					
28					
29					
30					
31					
Average	7.7	1455	3.8	3.3	< 3.6
Maximum	7.7	1470	5.6	5.3	4.4
Minimum	7.5	1440	2.4	2.0	< 3.0

665 801 27 P 1:31

John Burcham HARRF Superintendent 1521 South Hale Avenue, Escondido, CA 92029 Phone: 760-839-6273 Fax: 760-738-5168

October 25, 2005

Mr. John Robertus
Executive Officer
California Regional Water Quality Control Board
San Diego Region
9174 Sky Park Court, Suite 100
San Diego, CA 92123-4340
Attn: POTW Compliance Unit

Subject: Submittal of amended compliance statement of August 2005 Monthly Reports
Submittal of Corrected page 3 of 5 of August 2005 Monthly Reports

Dear Sirs:

As per comment in Notice of violation Order No. R9-2005-0255, Attached are as follow:

1. Amended compliance statement reports of August 2005 Monthly Reports.

2. Page 3 of 5 of August 2005 Monthly Reports revised format to reflect the first 12-month average limits.

If you have any questions, contact me at (760) 839-6273.

Sincerely,

John Burcham

HARRF Superintendent

SELF- MONITORING REPORT REVIEW

To: CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD

SAN DIEGO REGION

9174 Sky Park Court, Suite 100 San Diego, CA 92123-4340

DISCHARGER City of Escondido, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION NO. 93-70

REPORT FOR AUGUST 2005 REPORT DUE <u>SEPTEMBER 2005</u>

REPORT FREQUENCY MONTHLY

SIGNED UNDER PENALTY OF PERJURY

Our Review of the Attached Self-Monitoring Report Reveals the Following Monitoring Violation(s):

Manganese was exceeded daily maximum value of 0.06 mg/l and 12-month average effluent of 0.05 mg/l.

The Following Remedial Action will be (has been) Taken to Correct the Monitoring Violation Listed Above:

The City's Water Treatment Plant has performed a two week study using Ferric Sulfate which has low level of manganese in lieu of Ferric Chloride. The results indicated a lower manganese level but not low enough to meet the recycled water permit limit of 0.06 mg/l. Based on the results of this study the Water Treatment Plant and the HAARF will be changing to Ferric Sulfate for use as coagulants in place of Ferric Chloride.

The City is preparing a letter report on the manganese issue for you review and direction.

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FOR: AUGUST 2005

REPORT DUE: SEPTEMBER 2005

EXACT SAMPLE POINT: Recycle pump station

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff

SIGNED UNDER PENALTY OF PERJURY

Van inpulat

Constituent/ Property	12-month Average Limit	Daily Maximum Limit	Method	ML/ PQL	MDL	Sample Date	12-Monthly Average Results	Daily Maximum Results	Units
Total Dissolved Solid	1000	1100	SM2540C	10	.1	8/05	884	905	mg/l
Fluoride	2.0		EPA 300.0	0.05	0.008	8/15/05	0.93	0.73	mg/l
Chloride	300	330	EPA 300.0	0.5	0.08	8/15/05	187	181	mg/l
Sulfate	350	400	EPA 300.0	1	0.1	8/15/05	220	208	mg/l
Manganese	0.05	0.06	200.7	0.010	9.0E-06	8/30/05	0.062	0.075	mg/l
Boron	0.8		200.7	0.010	0.0007	8/30/05	0.695	0.581	mg/l
Iron	0.3	0.4	200.7	0.050	0.0003	8/30/05	0.085	0.175	mg/l
Adjusted Sodium Absorption Ratio			Calculation			8/30/05	52.6	4.12	
Percent Sodium	60	65	Calculation			8/30/05	54.1	54.1	%

John Burcham HARRF Superintendent 1521 South Hale Avenue, Escondido, CA 92029 Phone: 760-839-6273 Fax: 760-738-5168

September 28, 2005

Mr. John Robertus
Executive Officer
California Regional Water Quality Control Board
San Diego Region
9174 Sky Park Court, Suite 100
San Diego, CA 92123-4340
Attn: POTW Compliance Unit

Subject: Submittal of August 2005 Monthly Reports

Dear Sirs:

Attached are the subject Discharge Monitoring Reports for the Hale Avenue Resource Recovery Facility (HARRF) as required by Order No. 93-70.

If you have any questions, contact me at (760) 839-6273.

Sincerely,

John Burcham

HARRF Superintendent

Attached: August 2005 Monthly Reports

SELF- MONITORING REPORT

AUGUST 2005

CITY OF ESCONDIDO

Hale Avenue Resource Recovery Facility

Order No. 93-70

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Mary Ann Mann Utilities Manager

SELF- MONITORING REPORT REVIEW

To: CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD SAN DIEGO REGION
9174 Sky Park Court, Suite 100
San Diego, CA 92123-4340

DISCHARGER City of Escondido, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION NO. 93-70

REPORT FOR <u>AUGUST 2005</u> REPORT DUE <u>SEPTEMBER 2005</u>

REPORT FREQUENCY MONTHLY

SIGNED UNDER PENALTY OF PERJURY

Our Review of the Attached Self-Monitoring Report Reveals the Following Monitoring Violation(s):

One violation occurred in the month of August. Manganese was exceeded daily maximum value of 0.06 mg/l

The Following Remedial Action will be (has been) Taken to Correct the Monitoring Violation Listed Above:

The City's Water Treatment Plant has performed a two week study using Ferric Sulfate which has low level of manganese in lieu of Ferric Chloride. The results indicated a lower manganese level but not low enough to meet the recycled water permit limit of 0.06 mg/l. Based on the results of this study the Water Treatment Plant and the HAARF will be changing to Ferric Sulfate for use as coagulants in place of Ferric Chloride.

The City is preparing a letter report on the manganese issue for you review and direction.

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR: AUGUST 2005

REPORT DUE: SEPTEMBER 2005

EXACT SAMPLE POINT: Effluent end of UV infection Channel

SAMPLE TYPE: Continuous recording Flow meter and Turbidity Meter

SIGNED UNDER PENALTY OF PERJURY Van Lipsely

Date	Flow	Turbidity	Turbidity
Units	MGD	NTU	NTU
		Influent	Effluent
Reqt.		Aveage	Aveage
8/1/2005	1.20	4.8	1.2
2	0.37	3.0	1.2
3	0.84	3.3	1.6
4	1.28	3.3	1.6
5	0.17	3.2	1.5
6	*	*	*
7	1.17	2.8	1.5
8	0.75	2.8	1.5
9	1.10	3.1	1.6
10	0.21	3.0	1.5
11	1.12	3.8	1.5
12	0.67	3.3	1.3
13	*	*	*
14	1.31	3.8	1.4
15	1.18	3.3	1.6
16	1.18	4.9	1.4
17	0.85	4.8_	1.4
18	0.72	(5.6 <i>)</i>	1.3
19	0.42	4.9	1.1
20	*	*	* '
21	1.18	3.6	1.0
22	1.05	4.4	1.2
23	0.94	3.3	1.2
. 24	0.11	3.7	1.5
25	0.35	3.5	1.4
26	0.85	3.4	1.1
27	0.67	3.5	1.1
28	1.20	2.5	1.1
29	0.68	2.9	0.9
30	0.74	3.5	1.1
31	0.41	4.1	0.9
Average	0.81	3.6	1.3
Maximum	1.31	5.6	1.6
Minimum	0.11	2.5	0.9

^{* :}No distribution

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR: AUGUST 2005

REPORT DUE: SEPTEMBER 2005

EXACT SAMPLE POINT: Effluent end of UV infection Channel

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff

SIGNED UNDER PENALTY OF PERJURY

Vasa liplant

Reqt. 23 2 8/1/2005 2 < 2 2 2 2 3 2 < 2 4 2 < 2 5 2 < 2 6 * * * * 7 2 < 2 8 2 < 2 9 2 < 2 9 2 < 2 10 2 < 2 11 2 < 2 12 2 < 2 13 * * * 14 2 < 2 15 2 < 2 15 2 < 2 15 2 < 2 16 2 < 2	TC	TOTAL COLIFORMS							
Units mpn/100ml mpn/100ml Reqt. 23 2 8/1/2005 2 2 2 2 2 2 2 3 2 2 2 4 2 2 2 5 2 2 2 6 * * * 7 2 2 2 8 2 2 2 9 2 2 2 10 2 2 2 11 2 2 2 12 2 2 2 13 * * * 14 2 2 2 15 2 2 2 16 2 2 2 17 2 2 2 18 2 2 2 20 * * 2 21 2 <td>DATE</td> <td></td> <td></td>	DATE								
Units mpn/100ml mpn/100ml Reqt. 23 2 8/1/2005 2 2 2 2 2 2 2 3 2 2 2 4 2 2 2 5 2 2 2 6 * * * 7 2 2 2 8 2 2 2 9 2 2 2 10 2 2 2 11 2 2 2 12 2 2 2 13 * * * 14 2 2 2 15 2 2 2 16 2 2 2 17 2 2 2 18 2 2 2 20 * * 2 21 2 <td></td> <td>Maximum</td> <td>Median</td>		Maximum	Median						
8/1/2005 2 2 2 2 2 3 2 2 4 2 2 5 2 2 6 * * * * 7 2 2 8 2 2 9 2 2 9 2 2 10 2 2 11 2 2 12 2 2 13 * * * * 14 2 2 15 2 2 16 2 2 18 2 2 20 * * * 21 2 2 <td>Units</td> <td>mpn/100ml</td> <td>mpn/100mi</td>	Units	mpn/100ml	mpn/100mi						
2 2 2 3 2 2 4 2 2 5 2 2 6 * * * * 7 <	Reqt.	23	2						
3 <	8/1/2005	< 2	< 2						
3 <	2		< 2						
5 2 2 6 * * * * 7 <	3	< 2	< 2						
7	4		< 2						
7	5	< 2	< 2						
8 2 2 9 2 2 10 2 2 11 2 2 12 2 2 13 * * * 14 2 2 15 2 2 16 2 2 18 2 2 20 * * * 21 2 2 20 * * * * 21 2 2 23 2 2 24 2 2 25 2 2 26 2 2 27 2 2 29 2 2		*	*						
9	7	< 2	< 2						
14									
14	B	< 2	< 2						
14	4	< 2	< 2						
14		< 2	< 2						
14		< 2	< 2						
15 <									
16 2 2 17 2 2 18 2 2 19 2 2 20 * * * 21 2 2 22 2 2 23 2 2 24 2 2 25 2 2 26 2 2 27 2 2 28 2 2 29 2 2 30 2 2 Median 2 2	L								
18 2 2 19 2 2 20 * * * * 21 2 2 22 2 2 23 2 2 24 2 <		< 2	< 2						
18 2 2 19 2 2 20 * * * * 21 2 2 22 2 2 23 2 2 24 2 <		< 2	< 2						
21		< 2	< 2						
21		< 2	< 2						
21		< 2	< 2						
22 <		*	*						
23 <		< 2	< 2						
25 <		< 2	< 2						
25 <		< 2	< 2						
26 2 2 27 2 2 28 2 2 29 2 2 30 2 2 31 2 2 Median 2 2		< 2	< 2						
28 2 2 29 2 2 30 2 2 31 2 2 Median 2 2		< 2	< 2						
28 2 2 29 2 2 30 2 2 31 2 2 Median 2 2		< 2	< 2						
Median < 2 < 2			< 2						
Median < 2 < 2			< 2						
Median < 2 < 2		< 2	< 2						
Median < 2 < 2		< 2	< 2						
		< 2	< 2						
Maximum < 2 < 2	Median		< 2						
	Maximum								
Minimum < 2 < 2	Minimum	< 2	< 2						

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FOR: AUGUST 2005

REPORT DUE: SEPTEMBER 2005

EXACT SAMPLE POINT: Recycle pump station

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff

SIGNED UNDER PENALTY OF PERJURY

Vasu inpalignt

Constituent/ Property	12-month Average Limit	Daily Maximum Limit	Method	ML/ PQL	MDL.	Sample Date	Daily Maximum	Monthly Average	Units
Total Dissolved Solid	1000	1100	SM2540C	10	1	8/05	905	856	mg/l
Fluoride	2.0	·	EPA 300.0	0.05	0.008	8/15/05	0.73	0.73	mg/l
Chloride	300	[/] 330	EPA 300.0	0.5	0.08	8/15/05	181	181	mg/l
Sulfate	350	400	EPA 300.0	1	0.1	8/15/05	208	208	mg/l
Manganese	0.05	0.06	200.7	0.010	9.0E-06	8/30/05	€ 0.075	0.075	mg/l
Boron	0.8		200.7	0.010	0.0007	8/30/05	0.581	0.581	mg/l
Iron	0.3	0.4	200.7	0.050	0.0003	8/30/05	0.175	0.175	mg/l
Adjusted Sodium Absorption Ratio		·	Calculation	***	607 609	8/30/05	4.12	4.12	
Percent Sodium	60	65	Calculation			8/30/05	54.1	54.1	%

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FOR: AUGUST 2005

REPORT DUE: SEPTEMBER 2005

EXACT SAMPLE POINT: Recycle pump station

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY LAB staff & APCL

SIGNED UNDER PENALTY OF PERJURY

Vasulipetyt

Constituent/	Units	6-Month	Daily	Instantaneous	Method	ML	MDL		
Property		Median	Maximum	Maximum				Dail	y Max. Result
Sample Date							,		8/30/2005
Arsenic	ug/l	1100	6400	17000	200.7	10	3.69	<	10.0
Cadmium	ug/l	220	880	2200	200.7	·2	0.13	<	2
Chromium	ug/l	440	1800	4400	200.7	2	0.36	<	2
Copper	ug/l	220	2200	6200	200.7	5	0.1		6.21
Lead	ug/l	440	1800	4400	200.7	5	1.6	<	5
Mercury	ug/l	8.7	35	88	245.1	0.5	0.054	J	0.34
Selenium	ug/l	3300	13000	33000	200.7	10	1.2	<	10.0
Silver	ug/l	64	360	960	200.7	2	0.12	J	0.91
Zinc	ug/l	2700	16000	42000	200.7	10	0.32		51.0
Aluminum	ug/l	·			200.7	50	1.9		426
Barium	ug/l	-			200.7	10	0.006		48.3

J: Report between ML and MDL

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR: AUGUST 2005

REPORT DUE: SEPTEMBER 2005

EXACT SAMPLE POINT: Recycle pump station

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff

SIGNED UNDER PENALTY OF PERJURY Van Liptant

	рН	Conductivity	TSS	VSS	BOD
Units	mg/l	mmho/cm	mg/l	mg/l	mg/l
Method	SM 4500 H-B	SM2510B	SM2540D	SM 2540	SM 5210B
ML			1	1	3
8/1/2005	7.60	1463	2.0	1.7	4.4
2					
3					
4					
5					
6			,	ı	
7	7.7	1430	2.8	2.8	3.1
8					
9	,				
10					
11				·	
12					
13	,				
14					
15	7.8	1364	1.9	1.9	9.1
16					
· 17					
18					
19					
20					
21					
22	7.7	1356	2.0	1.8	< 3.0
23					
24					
25					
26					
27					
28	·				
29	7.7	1378	1.9	1.9	< 3
30					
31					
Average	7.7	1398	2.1	2.0	< 4.5
Maximum	7.8	1463	2.8	2.8	9.1
Minimum	7.6	1356	1.9	1.7	< 3.0

^{2μω 001} 27 P 1, 32

John Burcham HARRF Superintendent 1521 South Hale Avenue, Escondido, CA 92029 Phone: 760-839-6273 Fax: 760-738-5168

October 25, 2005

Mr. John Robertus
Executive Officer
California Regional Water Quality Control Board
San Diego Region
9174 Sky Park Court, Suite 100
San Diego, CA 92123-4340
Attn: POTW Compliance Unit

Subject: Submittal of September 2005 Monthly Reports

Dear Sirs:

Attached are the subject Discharge Monitoring Reports for the Hale Avenue Resource Recovery Facility (HARRF) as required by Order No. 93-70.

If you have any questions, contact me at (760) 839-6273.

Sincerely,

John Burcham

HARRF Superintendent

Attached: September 2005 Monthly Reports

SELF- MONITORING REPORT

SEPTEMBER 2005

CITY OF ESCONDIDO

Hale Avenue Resource Recovery Facility

Order No. 93-70

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Mary Ann Mann Utilities Manager

SELF- MONITORING REPORT REVIEW

To: CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD

SAN DIEGO REGION

9174 Sky Park Court, Suite 100 San Diego, CA 92123-4340

DISCHARGER City of Escondido, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION NO. 93-70

REPORT FOR <u>SEPTEMBER 2005</u> REPORT DUE <u>OCTOBER 2005</u>

REPORT FREQUENCY MONTHLY

SIGNED UNDER PENALTY OF PERJURY

Our Review of the Attached Self-Monitoring Report Reveals the Following Monitoring Violation(s):

Manganese was exceeded daily maximum value of 0.06 mg/l and 12-month average effluent of 0.05 mg/l for the month of September 2005.

The Following Remedial Action will be (has been) Taken to Correct the Monitoring Violation Listed Above:

Based on the results of a two week alternative coagulant study, at the water treatment plant, the Water Treatment Plant and the HAARF will be changing to Ferric Sulfate. Once a contract has been awarded for the new coagulant Ferric Chloride, which contained Manganese and other impurities, will no longer be used as a coagulant. It is anticipated that water treatment plant will begin using it on a regular basis by the end of November 2005.

The city has sent a letter of Requested Revision of Manganese, Boron, and Iron Recycled Water Limits for you to review and advice. This letter was date September 30, 2005.

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR: SEPTEMBER 2005

REPORT DUE: OCTOBER 2005

EXACT SAMPLE POINT: Effluent end of UV infection Channel

SAMPLE TYPE: Continuous recording Flow meter and Turbidity Meter

SIGNED UNDER PENALTY OF PERJURY

Van lipulyt

Date	Flow	Turbidity	Turbidity
Units	MGD	NTU	NTU
		Influent	Effluent
Reqt.	•	Aveage	Aveage
9/1/2005	1.08	4.6	1.5
2	1.03	4.4	1.5
3 .	0.90	4.1	1.2
4	0.12	3.9	1.0
5	*	*	*
6	1.18	3.9	0.7
7	1.30	3.2	0.8
8	1.07	4.6	1.1
9	0.24	(6.1)	1.0
10	1.17	4.7	1.1
11	0.10	4.0	0.9
12	1.14	5.0	0.8
13	0.24	(5.8)	0.9
14	0.13	3.3	0.9
15	1.26	3.9	1.0
16	0.97	4.4	1.1
17	*	* .	*
18	1.16	3.0	1.1
19	*	3.6	1.0
20	1.16	4.0	1.0
21	*	*	*
22	*	*	*
23	1.22	4.4	0.9
24	0.16	(5.3)	0.9
25	*	*	*
26	1.45	3.4	0.9
27	0.26	3.5	0.8
28	0.16	000	0.7
29	1.13	2.1	1.1
30	0.13	3.5	1.5
Average	0.78	4.1	1.0
Maximum	1.45	6.1	1.5
Minimum	0.10	2.1	0.7

^{* :}No distribution OOC= out of commission

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR: SEPTEMBER 2005

REPORT DUE: OCTOBER 2005

EXACT SAMPLE POINT: Effluent end of UV infection Channel

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff

SIGNED UNDER PENALTY OF PERJURY

Van lipelet

TC	TOTAL COLIFORMS								
DATE		Daily		7 day					
	ľ	Maximum		Median					
Units	n	npn/100ml		mpn/100ml					
Reqt.		23		2,∿					
9/1/2005	<	2	<	2					
2	<	- 2	<	2					
3	<	2 2 2	<	2					
4	<		<	2 2 *					
5 .		*							
6	<	2	<	2					
7	<		<	2					
8	<	2	<	2					
9		2 2 2 2 2		2 2 2 2 2 2 2 2 2 2 2					
10	<	2	<	2					
11	< .	2	<	2					
12				2					
13	<	2	<	2					
14		2		2					
15	<	2	<	2					
16	<	2	<	2					
17		*							
18	<	2	<	2					
19	<	2	<	2					
20	<	2	<	2					
21									
22		*		*					
23	<	2	<u> </u>	2					
24		2	<u> </u>	2					
25									
26	<	2 2 2	<	2					
27	<	2	<	2					
28		2		2 2 2 2 2					
29	<	2	<	2					
30	<	2	<	2					
Median	<	2	<	2					
Maximum		2 2		2					
Minimum	<	2	<	2					

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FOR: SEPTEMBER 2005 REPORT DUE: OCTOBER 2005

EXACT SAMPLE POINT: Recycle pump station

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff

SIGNED UNDER PENALTY OF PERJURY Vac hiphyt

Constituent/ Property	12-month Average Limit	Daily Maximum Limit	Method	ML/ PQL	MDL	Sample Date	12-Month Average Results	Daily Maximum Results	Units
Total Dissolved Solid	1000	1100	SM2540C	10	1	9/05	886	944	mg/l
Fluoride	2.0	- -	EPA 300.0	0.1	0.006	9/12/05	0.93	1.02	mg/l
Chloride	300	330	EPA 300.0	0.5	0.08	9/12/05	188	197	mg/l
Sulfate	350	400	EPA 300.0	1	0.1	9/12/05	222	234	mg/l
Manganese	0.05	0.06	200.7	0.01	1.0E-06	9/1/05	0.066	0.075	mg/l
Boron	0.8		200.7	0.01	0.00074	9/1/05	0.693	0.738	mg/l
Iron	0.3	0.4	200.7	0.50	0.0003	9/1/05	0.086	0.059	mg/l
Adjusted Sodium Absorption Ratio			Calculation			9/1/05	4.64	4.64	
Percent Sodium	60	65	Calculation	es su	****	9/1/05	52.7	55.7	%

Note: J = value between ML & MDL

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FOR: SEPTEMBER 2005

REPORT DUE: OCTOBER 2005

EXACT SAMPLE POINT: Recycle pump station

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff & APCL

SIGNED UNDER PENALTY OF PERJURY

Van inplot

The following constituents are monitored pursuant to NPDES No. CA0107981

Constituent/	Units	6-Month	Daily	Instantaneous				Daily	Max. Result
Property		Median	Maximum	Maximum	Method	ML	MDL		9/1&6/05
Arsenic	ug/l	1200	` 6900	18000	200.7	10	3.69	. v	10.0
Cadmium	ug/l	240	950	2400	200.7	2	0.126	٧	2
Chromium	ug/l	480	1900	4800	200.7	2	0.364	٧	2
Copper	ug/l	240	2300	6700	200.7	5	0.138		5.15
Lead	ug/l	480	1900	4800	200.7	5	1.62	٧	5
Mercury	ug/l	9.4	38	95	245.1	0.5	0.034	7	0.14
Selenium	ug/l	3600	14000	36000	200.7	10	1.2	٧	10
Silver	ug/l	130	630	1600	200.7	2	0.116	٦	0.86
Zinc	ug/l	2900	17000	46000	200.7	10	0.315		36.2
Aluminum	ug/l				200.7	50	1.85		119
Barium	ug/l			that their	200.7	10	0.006		44.8

J: Report between ML and MDL

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR: SEPTEMBER 2005

REPORT DUE: OCTOBER 2005

EXACT SAMPLE POINT: Recycle pump station

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff

SIGNED UNDER PENALTY OF PERJURY

Vace lipelit

	рН	Conductivity	TSS	VSS	BOD
Units	mg/l	mmho/cm	mg/l	mg/l	mg/l
Method	SM 4500 H-B		SM2540D	SM 2540	SM 5210B
ML			1	1	3
9/1/2005					
2					
3					
4			•		
5					
6	7.7	1470	1.7	1.5	< 3.0
7					
8					
. 9					
10					
11		·			
. 12	7.7	1445	1.9	1.7	4.8
13					
14					
15					
16					
17					·
18	7.6	1406	2.8	2.5	3.0
19					· ·
20					
21					,
22				_	
23		, i			
24					
25					
26	7.6	1340	2.3	2.0	< 3.0
27					
28					
29					
30					
Average	7.7	1415	2.2	1.9	< 3.5
Maximum	7.7	1470	2.8	2.5	4.8
Minimum	7.6	1340	1.7	1.5	< 3.0

John Burcham HARRF Superintendent 1521 South Hale Avenue, Escondido, CA 92029 Phone: 760-839-6273 Fax: 760-738-5168

November 21, 2005

Mr. John Robertus
Executive Officer
California Regional Water Quality Control Board
San Diego Region
9174 Sky Park Court, Suite 100
San Diego, CA 92123-4340
Attn: POTW Compliance Unit

Subject: Submittal of October 2005 Monthly Reports

Dear Sirs:

Attached are the subject Discharge Monitoring Reports for the Hale Avenue Resource Recovery Facility (HARRF) as required by Order No. 93-70.

If you have any questions, contact me at (760) 839-6273.

Sincerely,

John Burcham

HARRF Superintendent

Attached: October 2005 Monthly Reports

SELF-MONITORING REPORT

OCTOBER 2005

CITY OF ESCONDIDO

Hale Avenue Resource Recovery Facility

Order No. 93-70

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Mary Ann Mann Utilities Manager

SELF- MONITORING REPORT REVIEW

To: CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD

SAN DIEGO REGION

9174 Sky Park Court, Suite 100 San Diego, CA 92123-4340

DISCHARGER City of Escondido, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION NO. 93-70

REPORT FOR OCTOBER 2005 REPORT DUE NOVEMBER 2005

REPORT FREQUENCY MONTHLY

SIGNED UNDER PENALTY OF PERJURY

Our Review of the Attached Self-Monitoring Report Reveals the Following Monitoring Violation(s):

Manganese was exceeded daily maximum value of 0.06 mg/l and 12-month average effluent of 0.05 mg/l for the month of October 2005.

The Following Remedial Action will be (has been) Taken to Correct the Monitoring Violation Listed Above:

As stated in the compliance report for September, the Water Treatment Plant and the HAARF will be changing to Ferric Sulfate as coagulants in place of Ferric Chloride. A contract for the new treatment chemical is being processed and it is anticipated that water treatment plant can begin using it on a regular basis by the end of November 2005. The city has sent the Board a letter date September 25, 2005 to request revision of Manganese, Boron, and Iron Recycled Water Limits for review and comment.

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR: OCTOBER 2005

REPORT DUE: NOVEMBER 2005

EXACT SAMPLE POINT: Effluent end of UV infection Channel

SAMPLE TYPE: Continuous recording Flow meter and Turbidity Meter

SIGNED UNDER PENALTY OF PERJURY

Vase inplif

Date	Flow	Turbidity	Turbidity
Units	MGD	NTU	NTU
Doot		Influent	Effluent
Reqt.		Aveage	Aveage
10/1/2005	1.38	4.0	0.8
2	0.35	3.9	0.8
3	*	*	. *
4	1.41	3.1	1.1
5	0.26	3.5	0.9
6.	*	*	*
7	1.12	3.7	0.9
8	0.76	3.9	1.2
9	*	*	*
10	1.38	4.6	1.2
11	. *	*	*
12	0.72	5.0	1.1
13	1.34	(5.7)	1.0
14	0.15	4.0	0.8
15	1.20	(6.9)	1.3
16	1.16	3.8	1.2
17	0.67	(7.2)	1.3
18	0.98	3.7	1.0
19.	0.63	4.7	0.8
20	0.59	(9.4)	1.0
21	1.07	(6.2)	0.9
22	0.21	3.2	0.8
23	0.35	3.8	0.6
24	0.36	2.2	1.0
25	0.55	2.9	0.8
26	0.95	4.0	0.9
27	1.02	5.0	0.8
28	2.70	(5.3)	0.8
29	1.36	₹5.5	1.0
30	2.51	(6.0)	0.9
31	1.92	4.1	0.9
Average	1.00	4.6	1.0
Maximum	2.70	9.4	1.3
Minimum	0.15	2.2	0.6

^{* :}No distribution

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR: OCTOBER 2005

REPORT DUE: NOVEMBER 2005

EXACT SAMPLE POINT: Effluent end of UV infection Channel

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff

SIGNED UNDER PENALTY OF PERJURY

Van liptort

TOTAL COLIFORMS								
DATE	Daily 7 da							
		Maximum	Median					
Units		mpn/100ml 23	mpn/100m					
Reqt.		23		2				
10/1/2005	<		٧	2				
3	<	2 *	٧	2 2 *				
4 ·	<	2	٧	2				
5	<	2	٧	2				
6		*		*				
7	<	2	٧	2				
8	<	2	٧	2 2				
9	<	*	٧					
10	٧	2	٧	2				
11		*		*				
12	<	2	٧	2				
13	<	2	٧	2				
14	<	2	٧	2				
15	<	2	٧.	2				
16	<	2	٧	2 2 2 2 2 2 2 2 2 2 2				
17	<		٧	2				
18	٧	2	٧	2				
.19	'	2	'	2				
20	<	2	٧	. 2				
21	٧	2	٧	2				
22	'	2	٧	2				
23	<	2	٧					
24	٧	2	٧	2				
25	٧	2	٧					
26	٧.	2 .	٧	2				
27	٧	2	٧	2				
28	٧	2	٧	2				
29	٧	2 2 2	٧	2 2 2 2				
30	٧	2	٧	2				
31	<	2	٧ :	2				
Median	<	2	<	2				
Maximum	٧	2	<	2				
Minimum	<	2	<	2				

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FOR: OCTOBER 2005 REPORT DUE: NOVEMBER 2005

EXACT SAMPLE POINT: Recycle pump station

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff

SIGNED UNDER PENALTY OF PERJURY Vara Wishyt

Constituent/ Property	12-month Average Limit	Daily Maximum Limit	Method	ML/ PQL	MDL	Sample Date	12-Month Average Results	Daily Maximum Results	Units
Total Dissolved Solid	1000	1100	SM2540C	10	1	10/05	886	944	mg/l
Fluoride	2.0	-	EPA 300.0	0.1	0.006	10/10/05	0.93	1.02	mg/l
Chloride	300	330	EPA 300.0	0.5	0.08	10/10/05	189	197	mg/l
Sulfate	350	400	EPA 300.0	1	0.1	10/10/05	221	234	mg/l
Manganese	0.05	0.06	200.7	0.01	1.0E-06	10/2/05	0.073	0.075	mg/l
Boron	0.8		200.7	0.01	0.00074	10/2/05	0.688	0.738	mg/l
Iron	0.3	0.4	200.7	0.50	0.0003	10/2/05	0.086	0.059	mg/l
Adjusted Sodium Absorption Ratio			Calculation			10/2/05	4.06	4.35	<u>:-</u>
Percent Sodium	60	65	Calculation			10/2/05	53.2	55.7	%

Note: J = value between ML & MDL

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FOR: OCTOBER 2005

REPORT DUE: NOVEMBER 2005

EXACT SAMPLE POINT: Recycle pump station

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff & APCL

SIGNED UNDER PENALTY OF PERJURY

Van liptot

The following constituents are monitored pursuant to NPDES No. CA0107981

Constituent/	Units	6-Month	Daily	Instantaneous				Dail	y Max. Result
Property		Median	Maximum	Maximum	Method	ML	MDL		10/2/2005
Arsenic	ug/l	1200	6900	18000	200.7	10	3.69	٧	10.0
Cadmium	ug/l	240	950	2400	200.7	2	0.126	٧	2
Chromium	ug/l	480	1900	4800	200.7	2	0.364	<	2
Copper	ug/l	240	2300	6700	200.7	5	0.138		9.16
Lead	ug/l	480	1900	4800	200.7	5	1.62	<	5
Mercury	ug/l	9.4	38	95	245.1	0.5	0.034	J	0.2
Selenium	ug/l	3600	14000	36000	200.7	10	1.2	<	10
Silver	ug/l	130	630	1600	200.7	2	0.116	J	0.546
Zinc	ug/l	2900	17000	46000	200.7	10	0.315		60.0
Aluminum	ug/l	-		-	200.7	50	1.85		95.4
Barium	ug/l	-	·		200.7	10	0.006		45.7

J: Report between ML and MDL

DISCHARGER CITY OF ESCONDIDO, Hale Avenue Resource Recovery Facility

ORDER/RESOLUTION No. 93-70

REPORT FREQUENCY MONTHLY

REPORT FOR: OCTOBER 2005

REPORT DUE: NOVEMBER 2005

EXACT SAMPLE POINT: Recycle pump station

SAMPLE COLLECTED BY Operation Staff SAMPLED ANALYZED BY Lab Staff

SIGNED UNDER PENALTY OF PERJURY

Van eight

	рН	Conductivity	TSS	VSS	BOD
Units	mg/l	mmho/cm	mg/l	mg/l	mg/l
Method	SM 4500 H-B	SM2510B	SM2540D	SM 2540	SM 5210B
ML			1	1	3
10/1/2005				·	
2					
3					
4	7.6	1389	2.2	2.1	< 3.0
5					
6					
7					
8		·			
9					
10	7.6	· 1374	2.9	2.6	< 3.0
11					
12					
13					
14					
15					
16	7.6	1344	2.3	1.9	< 3.0
17					
18					
19					
20					
21				, , , , , , , , , , , , , , , , , , ,	
22					
23					
24					
25					
26	7.5	1373	2.8	2.5	< 3.0
27					
28					
29					
30	7.5	1412	2.0	1.8	< 3.0
31					
Average	7.6	1378	2.4	2.2	< 3.0
Maximum	7.6	1412	2.9	2.6	< 3.0
Minimum	7.5	1344	2.0	1.8	< 3.0